Description
Reinforcement learning addresses the design of agents that improve decisions while operating within complex and uncertain environments. This course covers principled and scalable approaches to realizing a range of intelligent learning behaviors. Topics include environment models, planning, abstraction, prediction, credit assignment, exploration, and generalization. Motivating examples will be drawn from web services, control, finance, and communications.
Prerequisites
EE278 or MS&E 221, EE104 or CS229, CS106A
Notes
Course Availability
The course schedule is displayed for planning purposes – courses can be modified, changed, or cancelled. Course availability will be considered finalized on the first day of open enrollment. For quarterly enrollment dates, please refer to our graduate education section.